|--|

【解答例】

令和7年度前期日程試験解答用紙(化学)

〔注意事項〕

- ・監督者の指示があるまで解答用紙を開いてはいけません。
- ・全てのページの所定欄に受験番号、氏名を記入しなさい。

|--|

第1問

※記述の問題に対する解答は一例である。

問1 (1) [

ל כ	7	チンダル現象	1	ブラウン運動	ウ	電気泳動
	L	正	オ	陰	カ	凝析

(2) 熱運動している水分子がコロイド粒子に衝突し、コロイド粒子が不規則な運動 を行うため。

(3) 名称:透析

理由:セロハンは半透膜であり、イオンはセロハンを通過することができるが、

コロイド粒子は、セロハンを通過できない大きさであるため。

問2 (1)

原子核の正電荷は F イオンの方が大きく、まわりの電子をよく引き付けるため。

(2) Ca²⁺ イオンの方が大きい

(理由) Ca²⁺ イオンのほうが、より外側の電子殻に電子が配置されているため。

第1問 1枚目 4

受験番号

問3 (1)

窒素は 56/28 = 2.0mol, 酸素は 96/32 = 3.0mol 窒素 2.0×10^5 Pa $\times 2.0/(2.0+3.0) = 8.0 \times 10^4$ Pa 酸素 2.0×10^5 Pa $\times 3.0/(2.0+3.0) = 1.2 \times 10^5$ Pa

(2)

窒素の混合前容器内の圧力を P_1 とすると,状態方程式より $P_1 \times 3.0 = 5.6/28 \times 8.3 \times 10^3 \times (27 + 273)$ $P_1 = 1.66 \times 10^5 Pa$ 混合後の窒素分圧を P_{N2} とおくと,ボイルの法則より $1.66 \times 10^5 Pa \times 3.0 = P_{N2} \times (3.0 + 7.0)$ $P_{N2} = 4.98 \times 10^4 Pa$ 混合後の酸素の分圧は $7.6 \times 10^4 Pa - 4.98 \times 10^4 Pa = 2.62 \times 10^4 Pa$ 混合前の酸素の分圧を P_2 とおくと,ボイルの法則より $2.62 \times 10^4 Pa \times 10.0 = P_2 \times 7.0$ $P_2 = 3.74 \times 10^4 Pa$ 状態方程式より $3.74 \times 10^4 Pa \times 7.0 = n \times 8.3 \times 10^3 \times (273 + 27)$ $n = 0.105 \, \text{mol}$ $32 \times 0.105 = 3.36 = 3.4g$

問4 (1)

5.85/58.5=0.100mol0.100mol/0.200kg = 0.500mol/kg NaCl は電離して溶質粒子の数が 2 倍になるため Δ t = K m = $1.85 \times 0.500 \times 2=1.85$ K 凝固点は-1.85°C

(2)

CaCl2の質量モル濃度は 1.11/111=0.0100 mol $0.0100 \,\mathrm{mol}/0.100 \,\mathrm{kg} = 0.100 \,\mathrm{mol/kg}$ CaCl2が水溶液中で完全に電離したとすると(電離度1)、溶質粒子数は3倍に増加する $CaCl_2 \rightarrow Ca^{2+} + 2 Cl^{-}$ $\Delta t = Km = 1.85 \times 0.100 \times 3 = 0.555$ 実際の $CaCl_2$ 水溶液の凝固点降下度は $\Delta t = 0.520$ CaCl2の電離度をxとおくと $CaCl_2 \rightleftharpoons Ca^{2+}$ 2 Cl - $0.100 \times (1-x)$ $0.100 \times x$ $0.100 \times 2 \times x$ 全溶質粒子の質量モル濃度の合計は $0.100 \times (1-x) + 0.100 \times x + 0.100 \times 2 \times x = 0.100(1-x+x+2x) = 0.100(1+2x)$ $0.520 = 1.85 \times 0.100 (1+2x)$ (1+2x) = 2.812x = 1.81x = 0.91電離度は 0.91

(3)

凝固点降下を利用し、道路の路面凍結防止を目的に散布する。

第1問 2枚目 得 点

第1問 合 計

|--|

第2問

問1 (1)

最大	工
最小	イ

(2)

$$K = \frac{[\mathrm{CO_2}] [\mathrm{H_2}]}{[\mathrm{CO}] [\mathrm{H_2O}]}$$

(3)

(4)

$$x = 1$$
 なので
 $K = 2.25 = \frac{y^2}{(1-y)^2}$ より $\frac{y}{(1-y)} = 1.5$
 $y = 1.5 - 1.5y$
 $2.5y = 1.5$
 $y = 0.60 \,\text{mol}$

1

第2問 1枚目 得 点

令和7年度前期日程試験解答用紙(化学)

間2 (1) 塩化水素

- pH = 2.00 なので [H⁺] = 0.0100 mol/L, 液量が 0.200 L であれば水素イオンは 0.00200 mol。これが反応してできるために必要な塩化ナトリウムも 0.00200 mol。よって必要な塩化ナトリウムは 0.00200 × $58.5 = 0.117~\mathrm{g}$
- 水酸化ナトリウム水溶液に含まれる水酸化物イオンは $0.012\times0.200=0.0024~mol$ 。 これが中和されると 0.000400~mol が残る。溶液は 0.400~L になっているので濃度は 0.00100~mol/L である。水のイオン積は $10^{-14}~$ であるので,水素イオン濃度は $10^{-11}~mol/L$ 。 よって pH は 11
- 問3 (1) $Pb + PbO_2 + 2H_2SO_4 \rightleftharpoons 2PbSO_4 + 2H_2O$
 - (2) 1 Ah = 3600 As = 3600 C

(5)

- (3) 2 mol の e⁻ が流れると、負極・正極それぞれで 1 mol の H₂SO₄ が消費される。 よって 1 mol の e⁻ であれば H₂SO₄ 消費量は 1 mol。
- (4) $4.50 \text{ mol/L} \times 3.50 \text{ L} = 15.75 \text{ mol} = 15.8 \text{ mol}$
- $3600 \times 50.0 = 180000 \text{ C}$ $180000 \div (9.65 \times 10^4) = 1.865 \text{ mol} = 1.87 \text{ mol}$

第2問 2枚目 得 点

第2問 合 計

|--|

第3問

問1 (1)

アルカリ金属

(2)

元素

セシウム (Cs)

理由

セシウムは、ナトリウムやカリウムより原子番号が大きいため、最外殻電子が原子核から遠く、電子と原子核の間の引力が弱い。したがって、他のナトリウムとカリウムに比べて電子を放出しやすく、イオン化エネルギーが最も小さくなる。

(3)

初期の 10% は 0.1 に相当するため

 $0.1 = (1/2)^{t/30}$

両辺の対数を取って

 $\log_{10}(0.1) = \log_{10}(1/2)^{t/30} = (t/30) \log_{10}(1/2)$

 $-1 = t/30 \times (-0.30)$

 $t = -30/ - 0.30 = 100 \,$

問2 (1)

$$CaO + H_2O \rightarrow Ca(OH)_2$$

(2)

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$$

(3) ┌

まず, 100 g の焼却灰中の Ca(OH)2 の質量は, 100 g × 0.37 = 37 g

Ca(OH)2のモル質量は74 g/mol

37 g の Ca(OH)2 の物質量は 37g/74 g/mol = 0.50 mol

 $Ca(OH)_2$ が CO_2 と反応して $CaCO_3$ を生成する反応は 1:1 のモル比であるので、0.50 mol の $Ca(OH)_2$ は 0.50 mol の CO_2 と反応する。

CO₂ のモル質量は 44 g/mol

よって、固定化される CO₂ の質量は 0.50 mol × 44 g/mol = 22 g

したがって, 焼却灰中の Ca(OH)2 が完全に反応した場合, 22 gの CO2 が固定化される。

第3問 1枚目 点

|--|

- 問3 (1) 系統分析または系統分離または定性分析 (2)
- - (3) $Cu^{2^{+}} + H_{2}S \rightarrow CuS + 2H^{+} \sharp t t Cu^{2^{+}} + S^{2^{-}} \rightarrow CuS$
 - (4) Al(OH)₃(白色)
 - まず、Al³⁺ 物質量は、 0.10 mol/L × 0.050 L = 0.0050 mol 次に、Al(OH)₃の質量: 0.0050 mol × 78.0 g/mol = 0.39g

第3問 2枚目 得 点

第3問合計

令和7年度前期日程試験解答用紙(化学)

第4問

問1 (1)

ア	9	1	3	ウ	2	I	4	オ	6
а	1	b	2	С	2				

 $\begin{array}{c|c}
 & O \\
 & M \\
 & C \\
 & M \\
 & O \\
\end{array}$

問2 (1)

4

(2) ① <u></u> ① <u></u> と ②

(3)

Α

(4)

1 L 中に 50 ng で信号強度が 100 なので , この飲料水の信号強度が 8 であれば 4 ng 含まれている。一日に 2 L の水を飲むとすると摂取量は $8.0 \times 10^{-9}\,\mathrm{g}$

問3 (1) [

) [ア	11	7	酸	は	水	溶	液	中	で	双	性	イ	才	ン	で	あ	り	`	水
	溶	液	の	рН	に	ょ	り	陽	イ	オ	ン	か	陰	イ	才	ン	に	変	化	す
	る	が	`	等	電	点	で	は	電	荷	が	0	に	な	る	た	め	`	移	動
	し	な	<	な	る	0														

(80字)

 (2)
 不 斉 炭 素 原 子 が 存 在 し な い た め 。

 (30字)

第4問 合 計